# THE UNITED REPUBLIC OF TANZANIA

## MINISTRY OF WATER AND IRRIGATION



2016/2017 ANNUAL BASIN HYDROLOGICAL REPORT

## WAMI/RUVU BASIN WATER BOARD P.O.BOX 826 MOROGORO

## TANZANIA

December 2017

## **Table of Contents**

## Pages

| <b>1.</b> II | NTRODUCTION                                                                                                                                                                                                                                  | 1              |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
|              | Background<br>Location of the Basin<br>Physiography<br>Objectives of this report<br>Scope and Outline of this report                                                                                                                         | 1<br>2<br>6    |
| 2.           | HYDRMET NETWORK OF THE BASIN                                                                                                                                                                                                                 | 8              |
|              | <ul> <li>2.1 Overview</li></ul>                                                                                                                                                                                                              | 8<br>9<br>2    |
| 3            | HYDROLOGICAL ANALYSIS AND INTERPRETATION1                                                                                                                                                                                                    | 4              |
|              | Rainfall1River discharges and Water levels2Water Storage in Mindu Dam2Groundwater levels for selected monitoring stations2Water use/allocations within Wami/Ruvu Basin2                                                                      | 22<br>25<br>26 |
| 4.0          | GENERAL REMARKS AND WAY FORWARD3                                                                                                                                                                                                             | 1              |
|              | 4.1 Challenges and interventions                                                                                                                                                                                                             | 31             |
| 5.0          | ANNEXES                                                                                                                                                                                                                                      | 3              |
|              | 5.1Status of Rainfall StationWami/Ruvu Basin35.2 Total monthly Rainfall 2016/2017 for Representative stations35.3 Status of Gauging Station Wami/Ruvu Basin45.4 DischargeMonthly Average (m³/s) 2016/20175.6 Daily Water level in Mindu Dam4 | 89<br>11<br>13 |

## LIST OF FIGURES

| Figure 1 Nine River and Lake Basins in Tanzania and Location of Wami Ruvu Basin                |
|------------------------------------------------------------------------------------------------|
| Figure 2 Major rivers in Wami/Ruvu Basin3                                                      |
| Figure 3 Major soil groups in Wami/Ruvu Basin4                                                 |
| Figure 4 Geological types in Wami/Ruvu Basin6                                                  |
| Figure 5 Map showing distributions of rainfall and weather stations                            |
| Figure 6 Map showing distribution of river gauging stations in Wami/Ruvu catchment $\ldots 10$ |
| Figure 7 Water quality monitoring stations in the Wami/Ruvu BasinBasin 11                      |
| Figure 8 Groundwater quality distribution map for Wami/Ruvu Basin                              |
| Figure 9 Groundwater monitoring stations in the Wami/Ruvu Basin                                |
| Figure 10 Rainfall distribution in Kinyasugwe sub-catchment Mkondoa and Wami sub-              |
| catchments covering the period of November 2016 to October 2017                                |
| Figure 11 Rainfall distribution in Ngerengere sub-catchment and Upper sub-catchment covering   |
| the period of November 2016 to October 201718                                                  |
| Figure 12 Rainfall distribution in Coastal rivers catchment covering the period of November    |
| 2016 to October 2017                                                                           |
| Figure 13 Comparison of Average discharge and Long-term Average for representative             |
| Figure 14 on the left, daily flow regime in Ruvu River as recorded at Ruvu Kibungo, Ngerengere |
| Konga and Ruvu Morogoro Road Bridge. On the right represent the relationship of Flow and       |
| Rainfall at Ruvu Kibungo (1H5) station24                                                       |
| Figure 15 Comparison of Average discharge and Long-term Average for representative stations    |
| in Ruvu River, namely Ruvu at Morogoro Rd Bridge(1H8), Ruvu at Kibungo (1H5) and               |
| Ngerengere River at Konga                                                                      |
| Figure 16 Comparison of Water Levels in Mindu Dam and Rainfall characteristics at one station  |
| within Mindu catchment                                                                         |
| Figure 17 Groundwater levels fluctuations of 5 monitoring boreholes with pumpage in            |
| Makutupora sub-catchment 2016/201727                                                           |
| Figure 18: Spatial distribution of water permits                                               |

## LIST OF TABLES

| Table 1 existing water quality Monitoring stations10                                          |
|-----------------------------------------------------------------------------------------------|
| Table 2 Monthly Average of all representative stations and monthly Rainfall in Wami Catchment |
|                                                                                               |
| Table 3 Comparison of Annual Rainfall and MAP for representative stations in Wami Catchment   |
|                                                                                               |
| Table 4 Average of all representative stations and monthly Rainfall in Ngerengere             |
| Table 5 Average of all representative stations and monthly Rainfall in Upper Ruvu             |
| Table 6 Comparison of Annual Rainfall and MAP for representative stations in Ruvu Catchment   |
|                                                                                               |
| Table 7 Average of all representative stations and monthly Rainfall in Coast       21         |
| Table 8 Comparison of Annual Rainfall and MAP for representative stations in Coast Catchment  |
|                                                                                               |
| Table 9 Comparison of Average flows for each month and LTAR for representative stations in    |
| Wami River                                                                                    |
| Table 10 Characteristics of Mindu Dam                                                         |
| Table 11 clarifies the amount of water available for other uses within the Ruvu River         |
| Table 12 clarifies the amount of water available for other uses within the Wami River         |

## **1. INTRODUCTION**

### Background

Wami/Ruvu Basin is one of the nine Rivers and Lakes Basins of Tanzania. The basin was established in 2002, and it operates under the Wami/Ruvu Water Board and the overall in charge is the Water Officer who is also the secretary of the Board. Wami/Ruvu Basin Water Board has the mandate to manage water resources in the basin.

### Location of the Basin

Wami/Ruvu Basin is located to the Eastern side of Tanzania (**Figure 1**), which lies between Longitudes 350 30' 00" to 400 00' 00" E and Latitudes 050 00' 00" to 070 30' 00". The Basin covers an area of about 66,820 km<sup>2</sup> covering the six regions, Dar es Salaam, parts of Coast, Morogoro, Dodoma, Tanga and Manyara. It has two major Rivers of Wami and Ruvu covering an area of 43,946 and 18,078 km<sup>2</sup> respectively. The Coastal sub basin which consist Mpiji, Sinza, Mlalakuwa, Msimbazi, Mbezi, Mzinga and Kizinga rivers covers an area of 4,796 km<sup>2</sup>, shows the locaton of Wami Ruvu Basin.

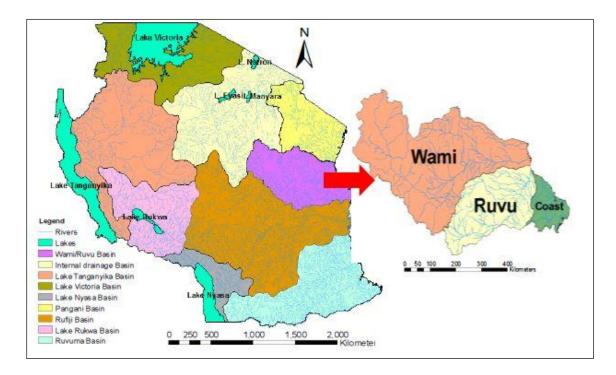



Figure 1 Nine River and Lake Basins in Tanzania and Location of Wami Ruvu Basin.

## Physiography

## 1.2.1 Topography

The basin is covered by low lying and mountainous landscapes as follows;

### Mountainous landscapes

- Uluguru mountains located south east, the source of Ruvu River (altitude 400 to 2500 m.a.s.l)
- Nguru Mountains located west of Kilosa (altitude 400 to 2000 m.a.s.l)
- Rubeho Mountains located west of Kilosa (altitude 500 to 1000 m.a.s.l)
- Ukaguru Mountains located South west of Wami River (altitude 400 to 1000 m.a.s.l)
- Nguu Mountains located western part of Wami River (altitude 400 to 2000 m.a.s.l)
- Low lying land
- Mkata plains (Altitude 400-800 m.a.m.s.l)
- Lower Wami (Altitude 200-400 m.a.m.s.l)
- Kisaki located south east of Uluguru mountain (altitude 140 200 m.a.m.s.l)

Kimbiji and Mbezi located to the southern coastal area of Dar es Salaam (altitude 50 – 100 m.a.s.l)

## 1.2.2 Drainage Pattern

The Basin is sub divided into three Catchments (Ruvu, Wami and Coast) in which seven sub catchments (Kinyasungwe, Mkondoa, Wami, Upper Ruvu, Ngerengere, Lower Ruvu and Coast) are found. Many rivers in Wami catchment originate from Chenene, Nguru, Nguu and Rubeho Mountains and flows eastward towards the Indian Ocean. Most rivers in Wami basin are seasonal while few are perennial. Originally, some of Ruvu river tributaries were perennial originating from Uluguru Mountains and flow eastward towards the Indian Ocean. **Figure 2** shows the major rivers in the Wami/Ruvu Basin.

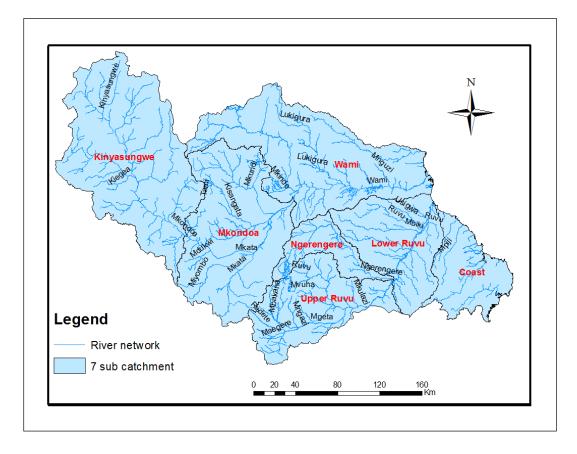



Figure 2 Major rivers in Wami/Ruvu Basin

#### 1.2.3 Soils

Generally, the catchment is characterized by 12 main types of soils namely: Cambisols, Ferralsols, Acrisols, Fluvisols, Luvisols, Lixisols, Arenosols, Leptosols, Nitisols, Vertisols, Planosols and Haplic Phaeozems. The dominant soils are Cambisols which covers parts of Bagamoyo, Kisarawe, Mkuranga, Morogoro Rural, Dodoma Urban, Bahi and Chamwino. The map below shows the distribution (**Figure 3**).

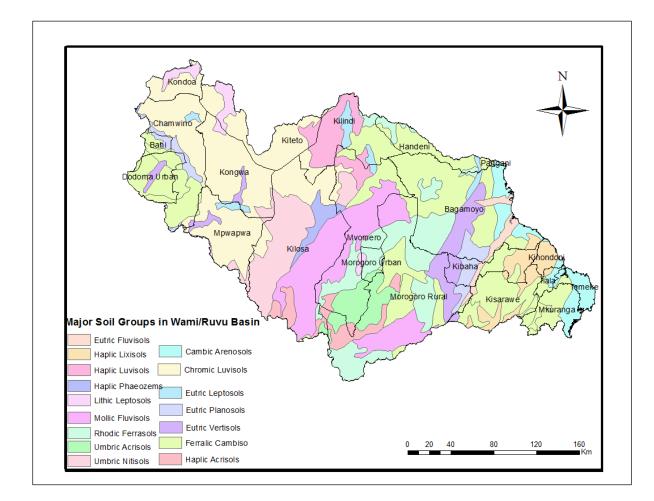



Figure 3 Major soil groups in Wami/Ruvu Basin

#### 1.2.4 Geology

The geology of the catchment is mainly dominated by:-

**Precambian**: Mostly occur in the Chenene Hills (Dodoma), Kiborian Hills (Mpwapwa) and rolling hills of Ikowa, Mlima wa Nyoka in Dodoma Kongwa and Uluguru Mountains and in the western part of the Ngerengere sub-basin. These rocks are mainly granitoid, gneisses, granulites and crystalline limestone meta-sediments and meta-igneous rocks with synorogenic granite, schist and gneiss and gneisses, granulites and crystalline limestone.

**Usagaran:-** Occupy Rubeho Mountains in Kilosa area and Ukaguru Mountains, Wota Mountains and area around Lumuma. In the north they occupy Nguru Mountains. They consist of biotitic muscovite gneiss and schist, metadorerite and metagabro, Migmatitic biotite gneiss and hornblende.

**Jurassic rocks** occur in the eastern margin of the Uluguru Mountains and elevated rolling hills between the Ruvu and Wami rivers. They consist of course sandstone, mudstone, and oolitic limestone deposited under the marine environment (Kapilima, 1988)

**The Karoo** rocks occupy south-eastern area of the Uluguru Mountains. The rocks consist mainly of sandstone, and shale deposited in the shallow fresh to brackish water. Their ages may vary from Permian to Triassic (Kent at al,1971).

**Cretaceous rocks** lie on the elevated rolling hills. They consist of clay, shale, calcareous` sandstone, sandy limestone and mudstone.

**Tertiary and Quaternary** (youngest strata in the basin): occur in the catchment area of the Ngerengere River near Morogoro Municipality, and in the elevated rolling hills and floodplains along the Ruvu River, Kibaha, Bagamoyo and extend up to Dar es Salaam. Pleistocene to recent sediments exists in the area developing as alluvial deposits all detrital deposits resulting from the operations of modern rivers, colluvial deposits alluvium in part but also containing angular fragments of original rocks such as talus and cliff debris, and coastal deposits. Mbugas depression fills and beach deposits.

**Neogene Rocks**: These are found in floodplains of Mkata, Mpwapwa, Kongwa, Dodoma and along Wami, Mkondoa, Kinyasungwe Rivers and along Saadan and Bagamoyo to Indian Ocean.

The deposit consists of calcareous crust, red-brown soils, alluvium, fluvial and sandy clay, and clayey sand with minor lenses of pure sand/clay, gravel and silt. In coastal areas inter bedded sandy clays and clayey sands with minor lenses of pure sand or clay are found. **Figure 4** shows the distribution of different geology within the basin.

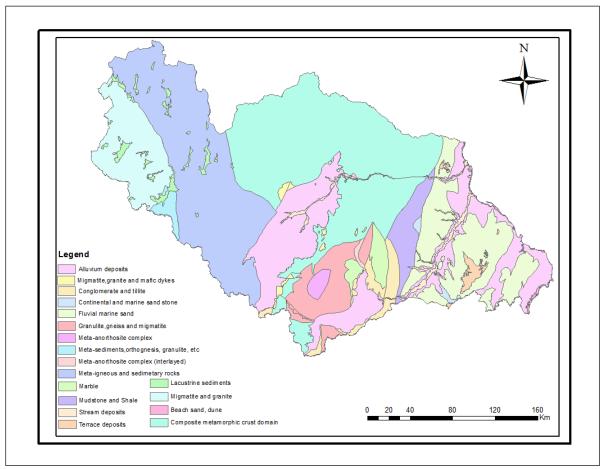



Figure 4 Geological types in Wami/Ruvu Basin

## **Objectives of this report**

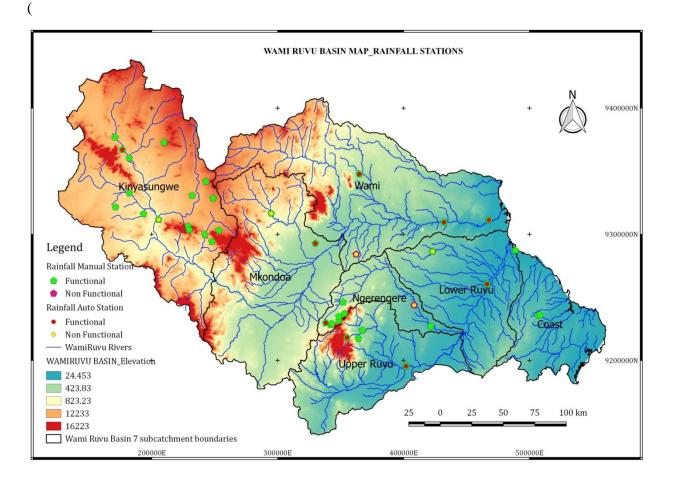
The main objective of this report is to give an overview of water status for 2016/2017 hydrological year (November 2016 to October 2017). Specifically the report aims to address the following areas:

- a) Characteristics of the Wami/Ruvu Basin
- b) Existing hydro met network of the Basin and their status
- c) Hydrological analysis and interpretation of the Wami/Ruvu Basin for the year 2016/2017

### Scope and Outline of this report

Chapter one presents the general basin characteristics and objectives of this report. The rest of the report is organized into the following Chapters:

- Chapter 2 presents the existing hydro met network of the Basin
- Chapter 3 describes the hydrological analyses and interpretations and comparisons with other years accompanied by graphs, charts tables and maps. (Rainfall histograms, maps, river discharge time series plots, reservoir water levels) of Wami/Ruvu Basin for the year 2016/2017 starting from November 2016 to October 2017.
- Chapter 4 identifies the challenges and success based on hydrology


## 2. HYDRMET NETWORK OF THE BASIN

### 2.1 Overview

Most of the hydrometric network stations were established in the early 1950s and records exist since that time. In the past there were 40 hydrometric stations, 9 weather stations and 33 rainfall stations. However, there is a serious shortage of usable hydrometric records from 1990s to 2005, as most of the stations were vandalised or were non-operational during that period. Since 2006, most of the network has been rehabilitated and improved. Others were rehabilitated during the IWRM&D study in the Basin by JICA study team in collaboration with the Basin Water Board.

### 2.2 Temporal and spatial coverage of climatic data

Wami/Ruvu Basin is currently collecting rainfall and other climatic data from a total of 57stations where by 34 stations are only manual rain gauges, 17 stations are automatic rain gaugesand6areMetstations



**Figure** 5). From existing meteorological stations data are collected on daily basis and available data are on rainfall, temperature, radiation, wind speed and relative humidity.

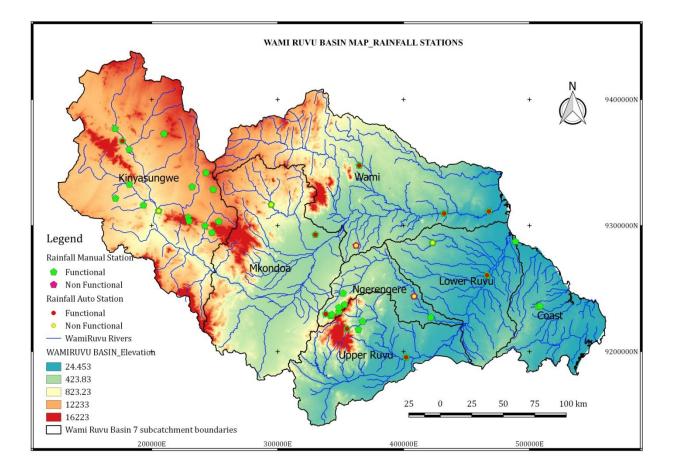
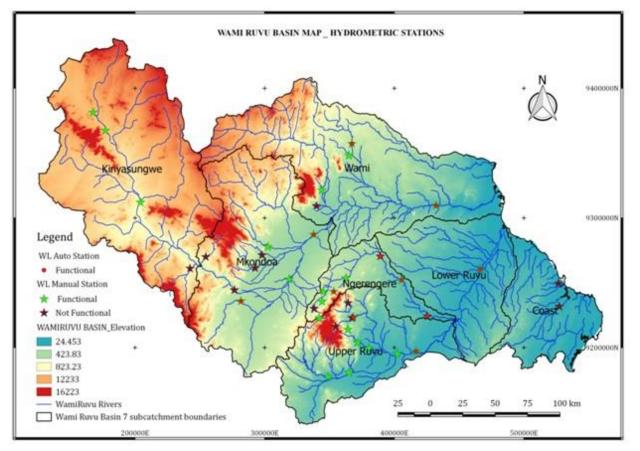




Figure 5 Map showing distributions of rainfall and weather stations

## 2.3 River Discharge and Sediment Data

## 2.3.1 Temporal and Spatial Coverage of Measuring Stations

The stations are distributed evenly to the Basin in which major rivers are gauged and total number of gauge stations is 43 were 21 stations are functional. The mountainous regions have higher network of rivers than the flat lands. Efforts are being made to evenly locate the gauging stations wherever it is necessary (



**Figure** 6). Annex 5.3 showing status of gauging Station and monthly average discharge data some of station in Wami/Ruvu

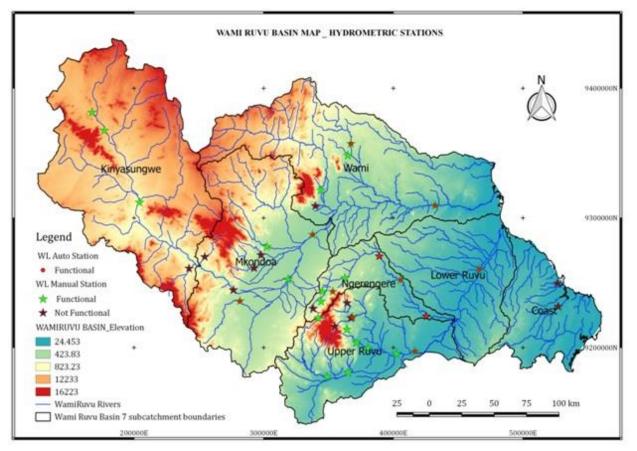



Figure 6 Map showing distribution of river gauging stations in Wami/Ruvu catchment

## 2.4 Water quality data

Total number of 76 water quality monitoring stations was established in the Wami/Ruvu Basin as indicated in **Table 1** and

## Figure 7.

| S/No | TYPE OF MONITORING | TOTAL SAMPLING POINTS |
|------|--------------------|-----------------------|
| 1    | GROUNDWATER        | 14                    |
| 2    | SURFACE WATER      | 30                    |
| 3    | WASTE WATER        | 32                    |
|      | TOTAL              | 76                    |

Table 1 existing water quality Monitoring stations

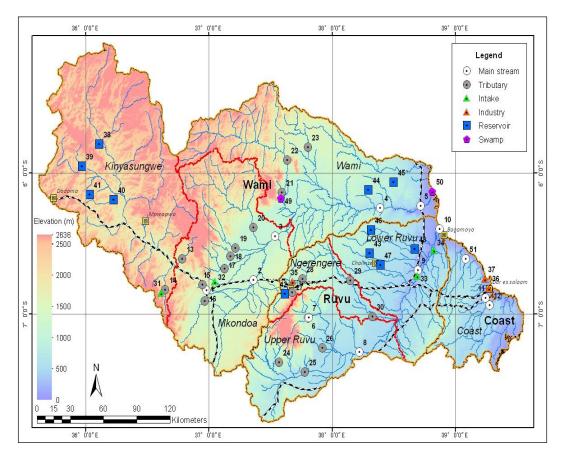



Figure 7 Water quality monitoring stations in the Wami/Ruvu Basin

The basin water office water quality sampling program collects information on the following parameters. The table below shows the list of parameters and their priority.

| Category Parameters to be Analyzed |  |
|------------------------------------|--|
|------------------------------------|--|

| 1 | High Priority | Temperature, pH, Turbidity (NTU), Electric conductivity/EC<br>(us/cm),TDS (mg/l), Suspended solids/SS (mg/l), BOD (mg/l),<br>Dissolved oxygen/DO (mg/l),Total coliform (count/100ml),<br>Fecal coliform (count/100ml) |
|---|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 | Low Priority  | COD (mg/l), Nitrate (mg/l), Ammonium (mg/l),<br>Chloride (Cl-) (mg/l).                                                                                                                                                |

Sample processing routinely occurs in the field for pH, temperature, and electrical conductivity (total dissolved solids). Dissolved oxygen, phosphates, nitrates, sulphates, and ammonia are all analyzed at the water quality office in Morogoro. BOD and COD are analyzed at the head water quality laboratory in Dodoma.

For the case of surface water two types of sample sites are routinely sampled from during the water quality surveys; industry and river. Industry sites are typically effluent discharge canals that have just entered the main river. River sites are typically surface water sites with no apparent industry nearby. While for the case of groundwater quality Electrical conductivity is very important. The areas of high electric conductivity (EC) are observed in several areas. The high value is probably caused by long residence time, and dissolved composition of geology (**Figure 8**). However the Mkata plain shows low levels in EC which is speculated to be due to the direct recharge from Kinyasungwe River.

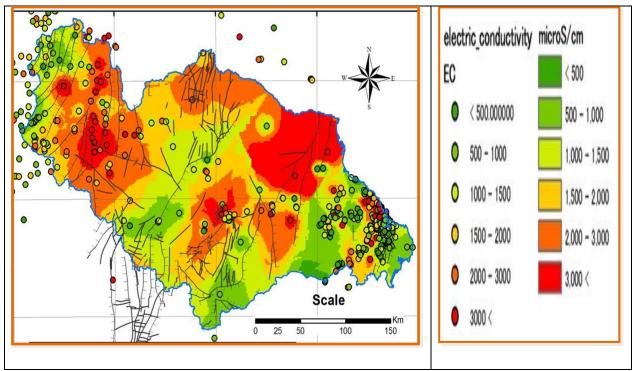



Figure 8 Groundwater quality distribution map for Wami/Ruvu Basin

#### 2.5 Reservoirs/Lakes Information

There are about 9 constructed dams in the basin and about 150 reservoirs which collect water from rivers, groundwater and other are rain fed only. Daily monitoring of water levels is done only at the Mindu Dam which is supplying water to Morogoro Municipality. Water levels in the dam decreased due to decreased rainfall amount falling around Uluguru Mountains in Morogoro Municipality area.

#### **Groundwater Data**

#### 2.6.1 Temporal and Spatial Coverage of Groundwater Monitoring Stations

Groundwater monitoring in the basin is currently monitored manually and automatically, although the station are not sufficiently and lack long-term data. Only one sub catchment, Makutupora has been being monitored for so long since 1960's. Basically the catchment has twelve monitoring boreholes in which only five monitoring wells are operating. Water level data have been collected by gauge readers from existing five monitoring wells in the Makutupora well field namely BH No. 86/78, BH No. 122/75, BH No. 234/75, BH No. 89/75 and BH No. 103/78.

Apart from 5 monitoring borehole in Makutupora, The basin has constructed ad installed a total of 21 monitoring boreholes during IWRMA & D project 2010/2011 which covers each at least each aquifer type (**Figure 9**).

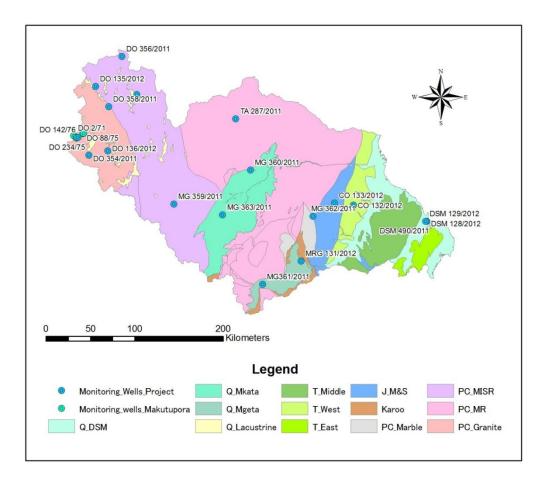
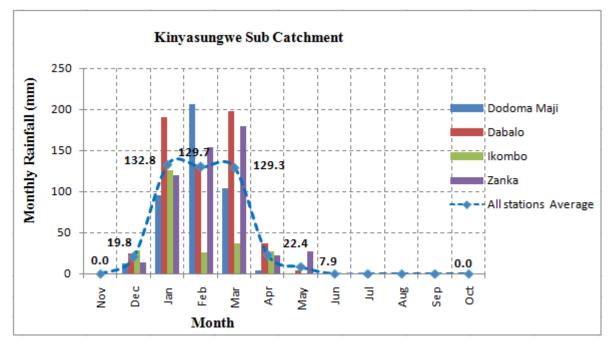



Figure 9 Groundwater monitoring stations in the Wami/Ruvu Basin

## **3 HYDROLOGICAL ANALYSIS AND INTERPRETATION**

#### Rainfall


Wami/Ruvu Basin has both unimodal and bimodal types of rainfall patterns. The unimodal type is found in the central part of Tanzania in the main Wami Catchment (Kinyasugwe sub catchment) while bimodal type is received in the part of Wami (Mkondoa and Wami sub catchments) Ruvu and Coastal Rivers catchments. In the unimodal type only one rainfall is experienced during the months of January, February and March while in the bimodal type, there are two rainy seasons, short rains (*Vuli rains*) in October to December and heavy rains (*Masika rains*) which is received from March to May.

#### Wami River Catchment

Wami River catchment has both unimodal and bimodal rainfall patterns. Unimodal pattern is usually observed in Kinyasungwe subcatchment (Figure 10) and bimodal pattern is observed in Mkondoa and Wami subcatchments. The eight (8) presentative stations were selected (4 presenting Wami and Mkondoa subcatchment namely; Wami Prison, Murad Sadiq, Kutukutu and Mziha Primary school and the remain 4 presenting Kinyasungwe sub catchment namely; Dodoma Maji, Dabalo Dam, Zanka and Ikombo), selection basis on the stations that has Long term data as well as shows the amount rainfall received in the elevated parts such as Ukaguru, Nguru, Nguu and Chenene Mountains where the Wami river source and its tributaries originated.

Wami and Mkondoa sub catchment experiences an initial period of increased rainfall during the *Vuli* (short rains occurring from mid-October to December), then a slight lull during January and February, followed by the *Masika* (long rains occurring from March to May). The Catchment receives a total rainfall average of 740mm per annual where the *Vuli* rainfall peaks at 32.3mm/ month in December, whilst March, April and May are the wettest *Masika* months, with average monthly rainfalls of 183.0 mm/month, 145.2 mm/month and 130.2 mm/month respectively. Thereafter a sustained four month dry season prevails with 19.1, 1.7, 8.9 and 7.2 mm/month falling in June, July, August and September respectively.

The rainfall records of the different stations show that the recorded rainfall is average compared to the long term average, also there is an increase in rainfall from Vuli towards Masika season/periods while in the months of June to September Catchment receives extremely low rainfall compared to the other Catchment. Therefore it is recommended that the all project lie under Catchment to harvest rainfall water by adopted and constructing the storage structural like dams for storage of water so as to overcome the deficit of water during the dry period.



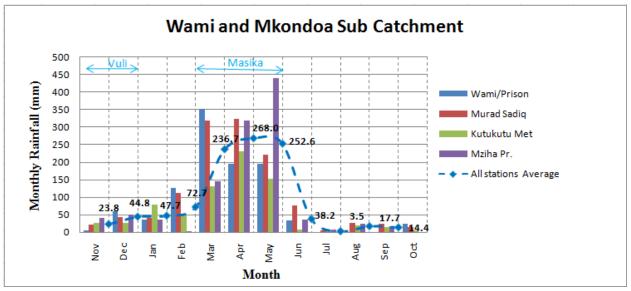
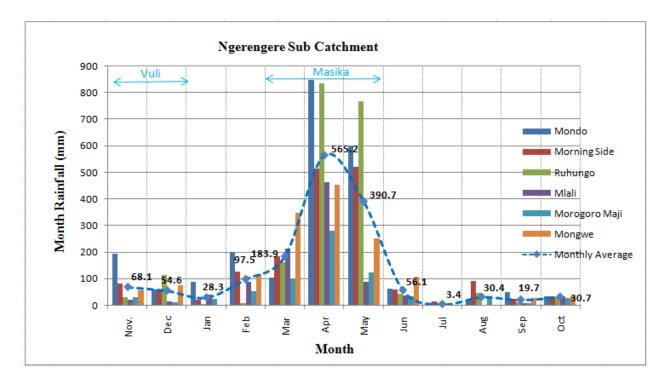



Figure 10 Rainfall distribution in Kinyasugwe sub-catchment Mkondoa and Wami sub-catchments covering the period of November 2016 to October 2017.

| Station<br>Name | Nov  | Dec  | Jan   | Feb   | Mar   | Apr   | May   | Jun  | Jul | Aug  | Sep  | Oct  |
|-----------------|------|------|-------|-------|-------|-------|-------|------|-----|------|------|------|
| Dodoma          |      |      |       |       |       |       |       |      |     | 0    |      |      |
| Maji            | 0    | 12.6 | 94.7  | 206   | 103.2 | 3.7   | 0     | 0    | 0   | 0    | 0    | 0    |
| Dabalo          | 0    | 25   | 190   | 133   | 197.9 | 36.2  | 4.1   | 0    | 0   | 0    | 0    | 0    |
| Ikombo          | 0    | 28.5 | 126.3 | 26.2  | 36.4  | 27.5  | 0     | 0    | 0   | 0    | 0    | 0    |
| Zanka           | 0    | 13.1 | 120   | 153.6 | 179.8 | 22.1  | 27.4  | 0    | 0   | 0    | 0    | 0    |
| Wami/Prison     | 6    | 60.2 | 36.4  | 126.3 | 352.5 | 197.3 | 196.9 | 34   | 0   | 1.7  | 2.5  | 26   |
| Murad Sadiq     | 22.3 | 43   | 40    | 112.2 | 318.1 | 324   | 221.2 | 76.1 | 3.9 | 26.3 | 24.6 | 14.3 |
| Kutukutu        |      |      |       |       |       |       |       |      |     |      |      |      |
| Met             | 25.6 | 25.6 | 78    | 50.1  | 131.3 | 230.5 | 151.2 | 7.3  | 2.1 | 18.2 | 14.5 | 3.9  |
| Mziha Pr.       | 41.2 | 50.5 | 36.3  | 2.3   | 144.8 | 320   | 441.1 | 35.3 | 7.8 | 24.6 | 15.8 | 25.5 |
| Average         | 11.9 | 32.3 | 90.2  | 101.2 | 183.0 | 145.2 | 130.2 | 19.1 | 1.7 | 8.9  | 7.2  | 8.7  |

Table 2 Monthly Average of all representative stations and monthly Rainfall in Wami Catchment

Table 3 Comparison of Annual Rainfall and MAP for representative stations in Wami Catchment


| Station<br>No. | Station Name | Mean Annual<br>Precipitation<br>(MAP) 1960- | Nov 2016-Oc                                |      |             |
|----------------|--------------|---------------------------------------------|--------------------------------------------|------|-------------|
|                |              | 2010 [mm]                                   | Annual<br>Rainfall in<br>2016/2017<br>[mm] | %    | Description |
| 9635012        | Dodoma Maji  | 565.4                                       | 420.2                                      | 74.3 | Average     |
| 9536004        | Dabalo Dam   | 599.6                                       | 586.2                                      | 97.8 | Average     |
| 9637056        | Wami/Prison  | 1044.3                                      | 1039.8                                     | 99.6 | Average     |

#### **Ruvu River Catchment**

Ruvu River catchment experiences a typical bimodal rainfall pattern were the Catchment comprised of Ngerengere and Upper Ruvu Sub catchments. Ruvu Catchment experiences an initial period of increased rainfall during the *Vuli* (short rains occurring from mid-October to December), then followed by the *Masika* (long rains occurring from March to May) as shown in the **figure 11**. In 2016/2017 the *Vuli* rainfall peaks at 144.9mm/ month and 68.1mm/ month in November for Upper Ruvu and Ngerengere sub catchment respectively, whilst March, April and May are the wettest *Masika* months, where Ngerengere has higher peak average of 565.2mm/ month compared to Upper Ruvu with Averange of 414.1 mm/month. However Upper Ruvu receives high rainfall compared to other sub catchments in the Basin, in hydrological year 2016/2017 it has receive about 1600mm per annual followed by Ngerengere sub catchment which receive 1529mm per annual. This is due to the presence of mountains and forests (Eastern Arc Mountains) within the sub catchment.

In comparison to Mean Annual Precipitation, Rainfall in Ruvu River catchment varied between sub catchments. In Upper Ruvu sub catchments all the stations recorded rainfall above the average, this speculates that the sub catchments have received rainfall above normal (**Table 6**, **Figure 11**). In Ngerengere sub catchment most of the station recorded rainfall within average range except for Ruhungo, Mongwe and Mlali stations which were above average (**Table 6**, **Figure 11**)

Therefore rainfall records of the different stations show that there is an increase in rainfall from Vuli towards Masika season/periods compared to months of June to September where the Catchment receives low rainfall. It is recommended that the all project lie under Catchment to harvest rainfall water by adopted and constructed the storage structural like dams for storage of water so as to overcome the deficit of water during the dry period



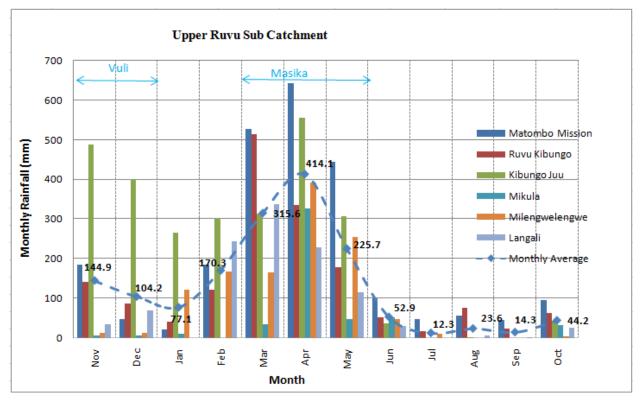



Figure 11 Rainfall distribution in Ngerengere sub-catchment and Upper sub-catchment covering the period of November 2016 to October 2017.

| Station<br>Name    | Nov   | Dec  | Jan  | Feb   | Mar   | Apr   | May   | Jun   | Jul  | Aug  | Sep  | Oct  |
|--------------------|-------|------|------|-------|-------|-------|-------|-------|------|------|------|------|
| Mondo              | 193.3 | 58.1 | 86.4 | 198.8 | 103.6 | 847.2 | 597.9 | 62.6  | 0    | 17.2 | 46.7 | 32.1 |
| Morning            |       |      |      |       |       |       |       |       |      |      |      |      |
| Side               | 81.6  | 58.8 | 17.7 | 126.8 | 183.5 | 513.5 | 519.9 | 59.3  | 13.7 | 91.3 | 22.6 | 33.4 |
| Ruhungo            | 29    | 111  | 3    | 5     | 159   | 835   | 767   | 43    | З    | 44   | 8    | 30   |
| Mlali              | 21    | 14.5 | 39   | 85.8  | 211   | 461.9 | 85.7  | 36    | 0    | 0.5  | 7.5  | 33   |
| Morogoro           |       |      |      |       |       |       |       |       |      |      |      |      |
| Maji               | 27.4  | 10.3 | 23.5 | 51.8  | 97.8  | 279.6 | 123.3 | 31.3  | 3.8  | 29.4 | 7.9  | 24.7 |
| Mongwe             | 56    | 74.7 | 0    | 116.5 | 348.3 | 453.8 | 250.4 | 104.6 | 0    | 0    | 25.7 | 31   |
| Monthly<br>Average | 68.1  | 54.6 | 28.3 | 97.5  | 183.9 | 565.2 | 390.7 | 56.1  | 3.4  | 30.4 | 19.7 | 30.7 |

Table 4 Average of all representative stations and monthly Rainfall in Ngerengere

Table 5 Average of all representative stations and monthly Rainfall in Upper Ruvu

| Station Name | Nov   | Dec   | Jan   | Feb   | Mar   | Apr   | May   | Jun  | Jul  | Aug  | Sep  | Oct  |
|--------------|-------|-------|-------|-------|-------|-------|-------|------|------|------|------|------|
| Matombo      | 184.4 | 47.7  | 22.5  | 184.5 | 527.1 | 644.1 | 445.6 | 99.7 | 47.0 | 55.8 | 45.3 | 95.0 |
| Mission      | 104.4 | 47.7  | 22.3  | 164.5 | 327.1 | 044.1 | 445.0 | 99.1 | 47.0 | 55.0 | 45.5 | 95.0 |
| Ruvu         | 142.4 | 86.3  | 40.9  | 122.7 | 514.6 | 336.8 | 179.8 | 51.9 | 16.5 | 76.7 | 23.3 | 62.4 |
| Kibungo      | 142.4 | 80.5  | 40.9  | 122.7 | 514.0 | 330.8 | 1/9.8 | 51.9 | 10.5 | /0./ | 23.3 | 02.4 |
| Mikula       | 5.5   | 7.1   | 11.5  | 0.0   | 34.0  | 327.6 | 48.7  | 51.6 | 0.0  | 0.0  | 0.0  | 33.8 |
| Milengwel.   | 13.5  | 14.0  | 122.1 | 167.0 | 164.8 | 392.3 | 255.6 | 47.7 | 10.1 | 0.2  | 0.0  | 3.5  |
| Langali      | 35.7  | 69.5  | 0.0   | 244.4 | 338.1 | 228.2 | 115.7 | 29.5 | 0.0  | 6.2  | 2.9  | 26.4 |
| Kibungo Juu  | 487.8 | 400.8 | 265.6 | 303.4 | 315.1 | 555.4 | 308.5 | 37.0 | 0.0  | 2.5  | 0    | 44.1 |
| Monthly      | 144.9 | 104.2 | 77.1  | 170.3 | 315.6 | 414.1 | 225.7 | 52.9 | 12.3 | 23.6 | 14.3 | 44.2 |
| Average      | 144.9 | 104.2 | //.1  | 170.5 | 515.0 | 414.1 | 223.1 | 52.9 | 12.3 | 23.0 | 14.3 | 44.2 |

| Table 6 Comparison of Annual Rainfall and MAP for | for representative stations in Ruvu Catchment |
|---------------------------------------------------|-----------------------------------------------|
|---------------------------------------------------|-----------------------------------------------|

| Station<br>No. | Station Name | Mean<br>Annual<br>Precipitation<br>(MAP) 1960-<br>2010 [mm] | Nov 2016-Oct 2017<br>Annual Rainfall<br>in 2016/2017<br>[mm] | 7<br>% | Description   |
|----------------|--------------|-------------------------------------------------------------|--------------------------------------------------------------|--------|---------------|
| 9637045        | Mondo        | 2531.2                                                      | 2243.9                                                       | 88.6   | Average       |
| 9637046        | Morning Side | 2298.1                                                      |                                                              |        | Average       |
|                |              |                                                             | 1722.1                                                       | 74.9   |               |
| 9637048        | Ruhungo      | 858.7                                                       | 2037                                                         | 237.2  | Above average |

| Station | Station Name       |                                                     |                                         |       |               |
|---------|--------------------|-----------------------------------------------------|-----------------------------------------|-------|---------------|
| No.     |                    | Annual<br>Precipitation<br>(MAP) 1960-<br>2010 [mm] | Annual Rainfall<br>in 2016/2017<br>[mm] | %     | Description   |
| 9637051 | Mlali              | 793.6                                               | 995.9                                   | 125.5 | Above Average |
| 9637052 | Morogoro Maji      | 750.6                                               | 710.8                                   | 94.7  | Average       |
| 9637049 | Mongwe             | 1250.0                                              | 1461                                    | 116.9 | Above Average |
| 9737006 | Matombo<br>Mission | 1569.4                                              | 2398.74                                 | 152.8 | Above average |
| 9737026 | Ruvu Kibungo       | 1605.7                                              | 1654.3                                  | 103.0 | Above average |
| 9737024 | Kibungo Juu        | 2556.3                                              | 2720.21                                 | 106.4 | Above average |

## Coastal Rivers Catchment

Coastal Rivers catchment have bimodal rainfall pattern, where the *Vuli* started in mid-October to December, then followed by the *Masika* rains from March to May.

The catchment has been presented by three rainfall stations (**Figure 12**). In hydrological year of 2016/2017 (Nov 2016 – Oct 2017) the catchment receive a total rainfall average of 1071mm per annual whereby Ubungo Maji station observed to have the highest rainfall amount followed by Kisarawe FDC and Kisarawe Boma which were 1115.85mm, 1061.3mm and 1035.8mm respectively (

Table 8). In comparison to Mean Annual Precipitation, The catchment has received rainfall below the average.

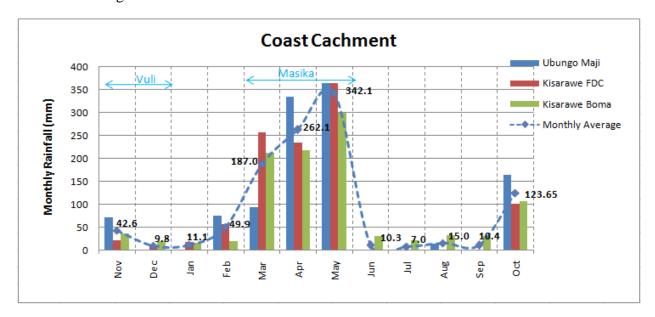



Figure 12 Rainfall distribution in Coastal rivers catchment covering the period of November 2016 to October 2017

| Station<br>Name | Nov  | Dec  | Jan  | Feb  | Mar   | Apr   | May   | Jun  | Jul  | Aug  | Sep  | Oct  |
|-----------------|------|------|------|------|-------|-------|-------|------|------|------|------|------|
| Ubungo          |      |      |      |      |       |       |       |      |      |      |      |      |
| Maji            | 71.2 | 0    | 0    | 75.6 | 92.6  | 334.6 | 363.3 | 0    | 0.5  | 13.6 | 0    | 6.2  |
| Kisarawe        |      |      |      |      |       |       |       |      |      |      |      |      |
| FDC             | 21.5 | 10.8 | 17.7 | 55.5 | 256.7 | 234.7 | 364.3 | 0    | 0    | 0    | 0    | 10.1 |
| Kisarawe        |      |      |      |      |       |       |       |      |      |      |      |      |
| Boma            | 35.2 | 18.7 | 15.5 | 18.7 | 211.6 | 217   | 298.7 | 30.8 | 20.6 | 31.4 | 31.2 | 16.4 |
| Monthly         |      |      |      |      |       |       |       |      |      |      |      |      |
| Average         | 42.6 | 9.8  | 11.1 | 49.9 | 187.0 | 262.1 | 342.1 | 10.3 | 7.0  | 15.0 | 10.4 | 10.9 |

Table 7 Average of all representative stations and monthly Rainfall in Coast

| Station<br>No. | Station Name  | Mean<br>Annual<br>Precipitation<br>(MAP) 1960-<br>2010 [mm] | Nov 2016-Oct 2017<br>Annual Rainfall in<br>2016/2017 [mm] | %    | Description      |
|----------------|---------------|-------------------------------------------------------------|-----------------------------------------------------------|------|------------------|
| 9636048        | Ubungo Maji   | 1669.5                                                      | 1115.85                                                   | 66.8 | Below<br>average |
|                | Kisarawe FDC  | 1437.8                                                      | 1061.3                                                    | 73.8 | Below<br>average |
|                | Kisarawe Boma | 1516                                                        | 1035.8                                                    | 68.3 | Below<br>average |

Table 8 Comparison of Annual Rainfall and MAP for representative stations in Coast Catchment

### **River discharges and Water levels**

#### Wami River

The upper part of Wami Basin (Kinyasungwe River) is characterised by intermittent river flows since the rainfall pattern is unimodal rainfall characteristics also could be explained by soil characteristics which suggests groundwater recharge. Therefore Most of the rainfall is converted to groundwater due to supposedly high infiltration rates of the soils.

The middle part Mkondoa sub catchment represented by Wami at Dakawa station and Wami sub catchment represented by Wami at Mandera station (although is not operate by time being, it

need rehabilitation of 0-1 gauge) are characterised by perennial flow which is attributed to high rainfall and good aquifers which favour river recharge during the dry season.

Due to non operational for Wami Mandera (1G2) station the catchment is presented by Wami at Dakawa (1G1) gauge were the annual average flows recorded in the hydrological year 2016/2017 at 1G1 stations is below compared to Long term average **Table 9**, although the peak is above compared to long term average flow for months of March to June while for the month of December 2016 to January 2017 the situation was so worth because the flow recorded was extreme low compared to the past hydrological years, (**Table 9 Comparison of Average flows for each month and LTAR for representative stations in Wami River**). This may be due to climate change and Sedimentation caused by human activities upstream the gauge.

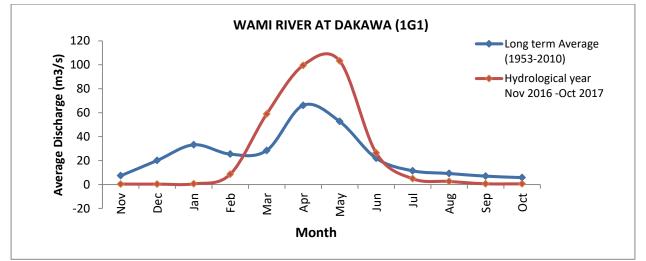



Figure 13 Comparison of Average discharge and Long-term Average for representative Stations (Wami at Dakawa- 1G1) in Wami River.

| 2016/2017 | 1G1<br>(m <sup>3</sup> /s) | LTA for<br>1G1(m <sup>3</sup> /s) |
|-----------|----------------------------|-----------------------------------|
| November  | 0.40                       | 7.38                              |
| December  | 0.35                       | 20.11                             |
| January   | 0.58                       | 33.20                             |
| February  | 8.56                       | 25.40                             |
| March     | 58.86                      | 28.46                             |
| April     | 99.50                      | 66.14                             |
| May       | 103.24                     | 52.72                             |
| June      | 26.46                      | 21.98                             |
| July      | 4.86                       | 11.49                             |

Table 9 Comparison of Average flows for each month and LTAR for representative stations in Wami River.

| August                     | 2.58  | 9.23  |
|----------------------------|-------|-------|
| September                  | 0.63  | 7.02  |
| October                    | 0.58  | 5.82  |
| <b>Annual Average Flow</b> | 25.55 | 24.08 |
| % of LTA                   | 94    | 4.25% |

**Note: LTA** = Long – term Average

#### Ruvu River

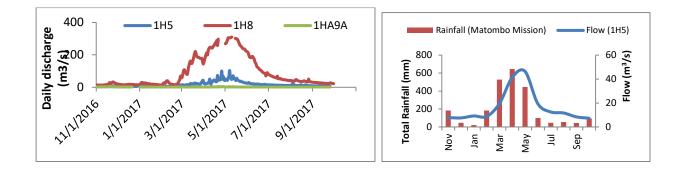
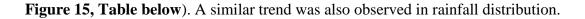




Figure **14**, represents the flow regime at the upstream station (1H5) as well as 1HA9A and a downstream station (1H8) of Ruvu River. Where by a downstream stations shows a more stable flow regime compared to an upstream stations.

In comparison with the annual average flow generally at both stations in Ruvu River the annual average flow of 2016/2017 hydrological year recorded to be below the Long-term average except Ruvu at Morogoro Rd bridge (1H8). When analysis were done seasonally it was observed that during the rainy season (March – May) the flow was recorded above average which means the rainfall received were above normal (



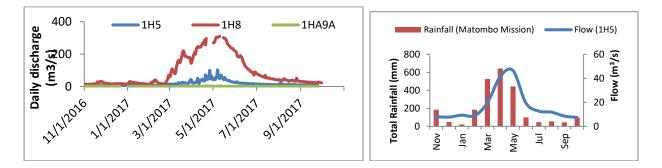



Figure 14 on the left, daily flow regime in Ruvu River as recorded at Ruvu Kibungo, Ngerengere Konga and Ruvu Morogoro Road Bridge. On the right represent the relationship of Flow and Rainfall at Ruvu Kibungo (1H5) station.

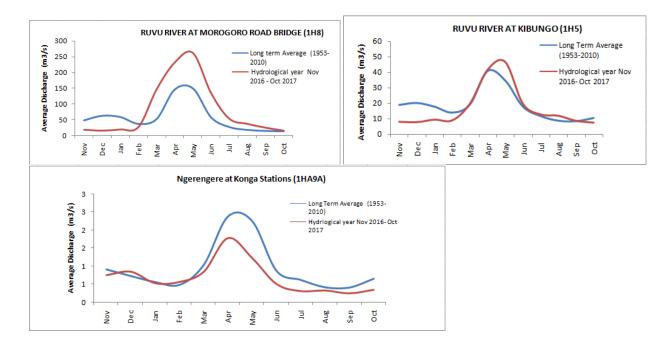



Figure 15 Comparison of Average discharge and Long-term Average for representative stations in Ruvu River, namely Ruvu at Morogoro Rd Bridge(1H8), Ruvu at Kibungo (1H5) and Ngerengere River at Konga

| Months | LTA<br>for<br>1H8 | 1H8(16/17) | % of<br>LTA | 1H5(16/17) | LTA<br>for<br>1H5 | % of<br>LTA | LTA<br>for<br>1HA9A | 1HA9A<br>(16/17) | % of<br>LTA |
|--------|-------------------|------------|-------------|------------|-------------------|-------------|---------------------|------------------|-------------|
| Nov    | 48.85             | 19.50      | 39.93       | 7.9        | 18.92             | 41.75       | 0.91                | 0.75             | 82.40       |
| Dec    | 63.17             | 16.63      | 26.32       | 7.65       | 20.1              | 38.06       | 0.73                | 0.85             | 116.34      |
| Jan    | 59.28             | 20.27      | 34.19       | 9.28       | 17.73             | 52.34       | 0.56                | 0.53             | 94.95       |
| Feb    | 37.71             | 27.99      | 74.22       | 8.82       | 13.96             | 63.18       | 0.48                | 0.57             | 117.60      |
| Mar    | 52.99             | 147.43     | 278.22      | 19.54      | 19.14             | 102.09      | 1.04                | 0.84             | 81.53       |
| Apr    | 145.92            | 232.50     | 159.33      | 41.37      | 40.6              | 101.90      | 2.39                | 1.77             | 74.34       |
| May    | 149.31            | 262.45     | 175.77      | 46.39      | 34.51             | 134.42      | 2.26                | 1.22             | 54.19       |
| Jun    | 58.33             | 135.48     | 232.26      | 19.43      | 17.78             | 109.28      | 0.87                | 0.51             | 58.33       |
| Jul    | 27.78             | 54.52      | 196.26      | 12.62      | 11.75             | 107.40      | 0.62                | 0.31             | 50.66       |
| Aug    | 18.66             | 38.05      | 203.89      | 11.78      | 8.75              | 134.63      | 0.42                | 0.33             | 79.47       |
| Sep    | 15.55             | 26.03      | 167.37      | 8.52       | 8.4               | 101.43      | 0.41                | 0.25             | 62.34       |
| Oct    | 14.29             | 16.76      | 117.28      | 7.37       | 10.47             | 70.39       | 0.65                | 0.35             | 53.60       |
| Annual | 57.65             | 83.13      | 142.09      | 16.72      | 18.51             | 88.07       | 0.94                | 0.69             | 77.15       |

#### Water Storage in Mindu Dam

Daily water level fluctuation in Mindu dam is represented by the graph below (**Figure 16**) while the general characteristics of the dam showing its storage, Dam crest and Dead storage is shown in **Table 10** below. Generally the water level fluctuations in the Mindu dam is highly correlated to the rainfall pattern in the catchment, where by highest levels of about 507.29m were recorded in May 2017 and Minimum level of 503.94m was recorded in February, where only 2m was remain to reach the dead storage, the situation was so worth and very critical it never happen for 25 years ago since March 1992 where the minimum water level was 503.79m m.s.l. Consequently the rainfall characteristics for one station within the Mindu Dam catchment showed a similar characteristic.

| Dam   | Storage (Mil.    | Max. WL     | Min. WL     | Dam crest   | Dead storage |
|-------|------------------|-------------|-------------|-------------|--------------|
|       | m <sup>3</sup> ) | (2016/2017) | (2016/2017) | Level(masl) | level(masl)  |
|       |                  | (masl)      | (masl)      |             |              |
|       |                  |             |             |             |              |
| Mindu | 1900             | 507.29      | 503.94      | 512         | 501          |
|       |                  |             |             |             |              |

Table 10 Characteristics of Mindu Dam

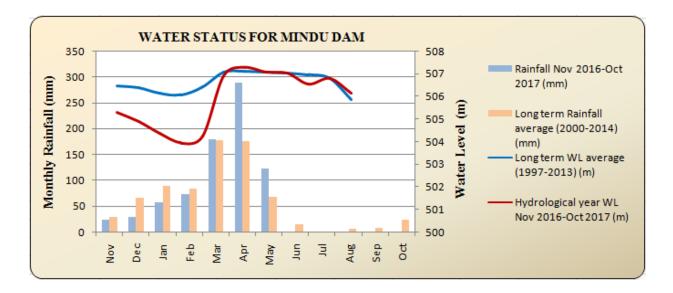



Figure 16 Comparison of Water Levels in Mindu Dam and Rainfall characteristics at one station within Mindu catchment.

#### Groundwater levels for selected monitoring stations.

Total of 5 boreholes monitoring groundwater level in Makutupora sub-catchment was selected where the trend of hydrological showing that the water table continue to decrease while the demand increases this may cause increase the cone of depression outside the catchment for discharge the field especial the month of May and June where the pump age is higher compare to the other months, (**Error! Reference source not found.**) below illustrates clearly. These fluctuations are highly link with the pump age taking place on production wells.

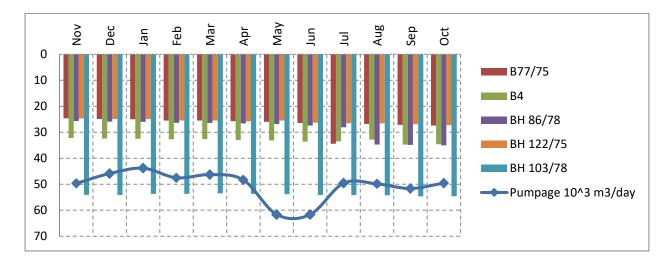



Figure 17 Groundwater levels fluctuations of 5 monitoring boreholes with pumpage in Makutupora sub-catchment 2016/2017

#### Water use/allocations within Wami/Ruvu Basin

#### **Ruvu Cachment**

The Catchment is potential for both ground and surface water were both sources are usefully for domestic water supply, industrial uses and irrigation for residents of Morogoro, DaresSalaam City, Kibaha and Bagamoyo towns and also to the people residing along the river. The population growth coupled with increasing water demand for domestic, industrial and irrigation uses is posing challenges in the allocation of the scarce resource in the basin. Figure 18 shows the spatial distribution of the water abstraction points in the Basin.

The total of 154 Water use permit were issued by Board (83 surface water abstraction with total uptake of 417,415,680m3 per year and 71 Bore hole with total abstraction of 189,584,510m3 per year).

Therefore the available water for the other user may be still available in all Months although we recommend more abstraction to be taken in Months of high available water by constructing storage infrastructure like dam to store and used during dry period to overcome deficit.

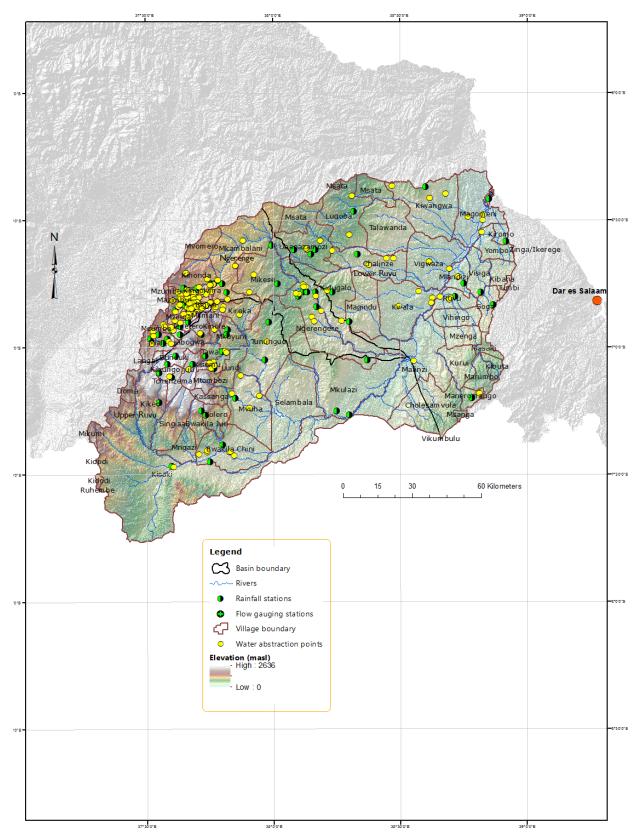



Figure 18: Spatial distribution of water permits

| Station                     | Nov  | Dec  | Jan  | Feb  | Mar   | Apr   | May   | Jun   | Jul  | Aug  | Sep  | Oct  |
|-----------------------------|------|------|------|------|-------|-------|-------|-------|------|------|------|------|
| Average Flow<br>(1H8A)      | 30.3 | 48.9 | 52.7 | 40.7 | 67.3  | 288.1 | 226.2 | 65.9  | 39.7 | 29.2 | 22   | 27.4 |
| Minimum Flow<br>(1H8)       | 0.06 | 0.04 | 0.99 | 1.32 | 23.84 | 48.73 | 25.75 | 24.29 | 4.23 | 1.09 | 0.5  | 0.12 |
| Minimum EFA<br>(Ruvu/Kongo) | 7.5  | 7.5  | 7.5  | 7.5  | 7.5   | 7.5   | 7.5   | 7.5   | 7.5  | 7.5  | 7.5  | 7.5  |
| Total Uptake                | 13.2 | 13.2 | 13.2 | 13.2 | 13.2  | 13.2  | 13.2  | 13.2  | 13.2 | 13.2 | 13.2 | 13.2 |
| Available<br>water          | 17.1 | 35.7 | 39.5 | 27.5 | 54.1  | 274.9 | 213.0 | 52.7  | 26.5 | 16.0 | 9.0  | 14.2 |

Table 11 clarifies the amount of water available for other uses within the Ruvu River.

### Wami Catchment

The Catchment is potential for both ground and surface water sources were it saves the different users such as domestic water supply, industrial uses and irrigation for residents of Dodoma, Morogoro and Pwani as well as people residing along the river. The total of 180 water use permit were issued by Board (71 surface water abstraction with total uptake of 885,363,955m<sup>3</sup> per year and 109 Bore hole with total abstraction of 53,192,039m<sup>3</sup> per year).

Therefore the available water for the user may be available in Month of January to July only while the month of November, December, August, September and October the available water may be used available for priority user (domestic) and Environmental purpose only so we recommend no water use permit will be offered for that period as shown in *Table 12* and users are advice to construct the storage infrastructure like dams especially during rainfall season to harvest water and stored so as to be used during the dry period to overcome the deficit.

| Station               | Nov   | Dec   | Jan   | Feb   | Mar   | Apr   | May   | Jun   | Jul   | Aug   | Sep   | Oct   |
|-----------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Average Flow<br>(1G2) | 14.2  | 28.8  | 47.4  | 60.2  | 52.06 | 64.3  | 190.2 | 138.9 | 46.5  | 24.9  | 19.7  | 15.3  |
| Minimum Flow<br>(1H8) | 3.79  | 3.38  | 1.12  | 2.39  | 3.02  | 5.64  | 40.52 | 47.97 | 13    | 8.12  | 5.87  | 4.26  |
| Minimum EFA<br>(Gama) | 6.0   | 6.0   | 6.0   | 6.0   | 6.0   | 6.0   | 6.0   | 6.0   | 6.0   | 6.0   | 6.0   | 6.0   |
| Total Uptake          | 27.99 | 27.99 | 27.99 | 27.99 | 27.99 | 27.99 | 27.99 | 27.99 | 27.99 | 27.99 | 27.99 | 27.99 |
| Available<br>water    | 0.0   | 0.8   | 19.4  | 32.2  | 24.1  | 36.3  | 162.2 | 110.9 | 18.5  | 0.0   | 0.0   | 0.0   |

Table 12 clarifies the amount of water available for other uses within the Wami River.

## **Coast Catchment**

The Catchment is potential for ground water sources were it saves the different users such as domestic water supply, industrial uses and irrigation for residents of Dar es Salaam and Pwani. The total of 48 Bore hole with total abstraction of 1,402,453m<sup>3</sup> per year were issued by Board.

# 4.0 GENERAL REMARKS AND WAY FORWARD

### 4.1 Challenges and interventions

Few primary stations were chosen which can fairly give information of the different parameters of interest, in collecting water resources data (rainfall, surface and ground water levels, ratings, water quality and weather) WRBWO faced the following challenges:-

- Many stations (Rainfall, weather and groundwater levels) lack long-term information thus become cumbersome to discuss the variation happening.
- Gauging station lacks proper rating curves therefore it is difficult to tell trend of water discharges.
- Automatic stations (Groundwater, weather, and gauging) are not continuous visited due to insufficient of fund (amount and timely) therefore ensuring their functionality and accuracy become very challenging.

Key interventions include the following:

- > Replacement of battery for all automatic Rain (Hobo) in Morogoro.
- Water quantity data were collected using the hydrometric and rainfall stations and finally stored into database.
- Rehabilitation of primary stations namely; Wami at Mandera, Diwale at Ngomeni (0-1) gauge and other 10 secondary stations under Wami catchement
- > Checking old rating curves and validating rating curves by supporting from WARIDI.
- Purchasing of ADCP instrument for Flow measurement especially during high flow supported by WARIDI
- More study/research on ground water is required to know the source and available storage recharge so as to have sufficient supply for Dodoma urban

- Database management using Acquires, Nile Basin Decision Supporting System (NBDSS) and GIS.
- > Training personnel in database management.
- Training gauge readers to read manual gages, record ground water levels, to identify any equipment problems; provide security and to perform minor station maintenance.
- > Improving monitoring through frequent visits to the same of stations.

# **5.0 ANNEXES**

5.1Status of Rainfall StationWami/Ruvu Basin

|      |                |                                 | Chation                         | Satation                  | Chatian                    |                        | Status                   |
|------|----------------|---------------------------------|---------------------------------|---------------------------|----------------------------|------------------------|--------------------------|
| S/No | Station<br>ID. | Station Name                    | Station<br>Latitude<br>(Degree) | Longitud<br>e<br>(Degree) | Station<br>Altitude<br>(m) | Status of<br>AWL Gauge | Status of Staff Gauge    |
| 1    | 1G1            | Wami at Dakawa                  | -6.44783                        | 37.53343                  | 361                        | Functional             | Functional/sedimentation |
| 2    | 1G2            | Wami at Mandera                 | -6.24638                        | 38.38732                  | 87                         | Not<br>Functional      | Not Functional           |
| 3    | 1G5A           | Tami at Msowero                 | -6.53173                        | 37.21375                  | 440                        | Not<br>Installed       | Not Functional           |
| 4    | 1G6            | Kisangata at Mvumi              | -6.58897                        | 37.17288                  | 436                        | Not<br>Functional      | Not Functional           |
| 5    | 1G8            | Wami at Rudewa                  | -6.67917                        | 37.12418                  |                            | Not<br>Installed       | Not Functional           |
| 6    | 1GA1A          | Lukigura at Kimamba Rd. Br.     | -5.81396                        | 37.80101                  | 512                        | Not<br>Functional      | Functional               |
| 7    | 1GA2           | Mziha at Mziha                  | -5.89588                        | 37.78001                  | 443                        | Functional             | Functional               |
| 8    | 1GB1A          | Diwale at Ngomeni               | -6.13764                        | 37.59020                  | 387                        | Not<br>Functional      | Not Functional           |
| 9    | 1GB2           | Mkindo at Mkindo                | -6.24762                        | 37.55250                  |                            | Not<br>Installed       | Not Functional           |
| 10   | 1GD2           | Mkondoa at Kilosa               | -6.83173                        | 36.97824                  | 495                        | Functional             | Not Functional           |
| 11   | 1GD16          | Kinyasungwe at<br>Kongwa/Dodoma | -6.21775                        | 36.32700                  | 855                        | Not<br>Functional      | Not Functional           |
| 12   | 1GD21          | Kinyasungwe at Itiso            | -5.59                           | 36.00                     |                            | Not<br>Installed       | Not Functional           |
| 13   | 1GD29          | Mkondoa at Mbarahwe             | -6.60                           | 36.78                     |                            | Not<br>Installed       | Not Functional           |

| 14 | 1GD30         | Lumuma at Kilimalulu              | -6.68    | 36.67    |      | Not<br>Functional | Not Functional           |
|----|---------------|-----------------------------------|----------|----------|------|-------------------|--------------------------|
| 15 | 1GD35         | Miyombo at Kivungu                | -6.90987 | 37.02422 | 477  | Not<br>Functional | Functional               |
| 16 | 1GD36         | Mkata at Mkata                    | -6.75907 | 37.36130 | 399  | Not<br>Functional | Functional               |
| 17 | 1GD37         | Great Kinyasungwe at Ikombo       | -5.7160  | 36.0849  |      | Not<br>Functional | Functional               |
| 18 | Local<br>LKiC | Little Kinyasungwe at Chihanga    | -5.9047  | 35.8439  |      | Vandalised        | Functional               |
| 19 | Local<br>LKiM | Little Kinyasungwe at<br>Mayamaya | -5.81948 | 35.80410 | 1153 | Functional        | Functional               |
| 20 | 1H3           | Ruvu at Kidunda                   | -7.26395 | 38.24558 | 86   | Not<br>Functional | Functional               |
| 21 | 1H5           | Ruvu at Kibungo                   | -7.02370 | 37.80948 | 203  | Functional        | Functional               |
| 22 | 1H8A          | Ruvu at Morogoro Rd. Br.          | -6.69080 | 38.69427 | 24   | Functional        | Functional               |
| 23 | 1H10          | Ruvu at Mikula                    | -7.27967 | 38.11447 | 80   | Not<br>Functional | Functional               |
| 24 | 1HA1A         | Ngerengere at Utari Bridge        | -7.01806 | 38.32478 | 101  | Vandalised        | Vandalised               |
| 25 | 1HA3          | Ngerengere at Kingolwira          | -6.75177 | 37.75762 | 425  | Not<br>Installed  | Functional               |
| 26 | 1HA8A         | Morogoro at Morogoro              | -6.84562 | 37.67247 | 547  | Vandalised        | Functional               |
| 27 | 1HA9A         | Ngerengere at Konga               | -6.90653 | 37.59944 | 531  | Functional        | Functional/sedimentation |
| 28 | 1HA15         | Ngerengere at Mgude               | -6.76507 | 38.14570 | 180  | Not<br>Installed  | Functional               |
| 29 | Local<br>MzM  | Mzinga at Mzinga                  |          |          |      | Not<br>Functional | Not Functional           |
| 30 | Local<br>NgL  | Ngerengere at Lukwambe            | -6.59937 | 37.99728 | 332  | Not<br>Functional | Not Functional           |
| 31 | 1HB2          | Mgeta at Mgeta                    | -7.03    | 37.57    | 975  | Functional        | Functional               |

| 32 | Local<br>MgD | Mgeta at Duthumi          | -7.41009 | 37.77803 | 138 | Not<br>Functional | Not Functional |
|----|--------------|---------------------------|----------|----------|-----|-------------------|----------------|
| 33 | 1HC2         | Mvuha at Ngagama          | -7.19999 | 37.83795 | 138 | Vandalised        | Functional     |
| 34 | 1HC2A        | Mvuha at Tulo School      | -7.24065 | 37.91766 |     | Not<br>Functional | Functional     |
| 35 | Local<br>MfK | Mfizigo at Kibangile      | -7.02970 | 37.80005 | 207 | Not<br>Functional | Functional     |
| 36 | Local<br>MfL | Mfizigo at Lanzi          | -7.08922 | 37.68515 | 898 | Not<br>Functional | Not Functional |
| 37 | 1J5          | Kizinga at Mbagala/Buza   | -6.90145 | 39.24128 |     | Not<br>Installed  | Not Functional |
| 38 | 1J6          | Mzinga at Majimatitu      | -6.95083 | 39.24633 |     | Not<br>Functional | Not Functional |
| 39 | New          | Mngazi at Vigolegole      | -7.11    | 37.77    | 345 | Not<br>Installed  | Functional     |
| 40 | New          | Mbezi at Kalundwa(Kinole) | -6.92478 | 37.77185 | 496 | Not<br>Installed  | Functional     |
| 41 | 1HA7A        | Mlali at Mlali            | -6.96326 | 37.53483 | 584 | Not<br>Installed  | Functional     |
| 42 | New          | Mtombozi at Mtombozi      | -7.44    | 37.63    | 165 | Not<br>Installed  | Functional     |
| 43 | New          | Lukulunge at Konga        | -6.9141  | 37.5909  | 539 | Not<br>Installed  | Functional     |

| 5.18     | atus of Rainfall StationWami | /Ruvu Basin |      |      |               |                   |                 |             |
|----------|------------------------------|-------------|------|------|---------------|-------------------|-----------------|-------------|
| S/N<br>0 | Station Name                 | Remarks     | Lat. | Long | Elevation (m) | Available<br>Data | Missing<br>data | MAP<br>(mm) |

| 5.1S | tatus of Rainfall StationWam  | i/Ruvu Basin       |          |          |               |               |           |        |
|------|-------------------------------|--------------------|----------|----------|---------------|---------------|-----------|--------|
| S/N  |                               |                    |          |          |               | Available     | Missing   | MAP    |
| 0    | Station Name                  | Remarks            | Lat.     | Long     | Elevation (m) | Data          | data      | (mm)   |
| 1    | Berega Mission Hospital       | Automatic Rainfall | -6.18030 | 37.14683 | 832           |               |           |        |
| 2    | Buigiri Primary School        | Operational        | -6.13    | 36.03    | 1066          |               |           |        |
| 3    | Chamkoroma Primary School     | Operational        | -6.33    | 36.67    |               |               |           |        |
| 4    | Chihanga Primary School       | Operational        | -5.969   | 35.953   |               |               |           |        |
| 5    | Chilonwa Primary School       | Operational        | -6.03    | 36.13    |               |               |           |        |
| 6    | Dabalo Primary School         | Operational        | -5.78    | 36.13    | 1524          |               |           |        |
| 7    | Dodoma Maji                   | Operational        | -6.18782 | 35.75320 | 1141          |               |           | 565    |
| 8    | Hobwe                         | Operational        | -6.98    | 37.57    | 740           | 1954-<br>2012 |           | 1011.9 |
| 9    | Hombolo Primary School        | Operational        | -5.88    | 35.92    | 1097          | 1964-<br>2010 | 1978-2009 | 182.3  |
| 10   | Ibwaga Primary School         | Operational        | -6.295   | 36.557   |               |               |           |        |
| 11   | Ikowa (Azimio Primary School) | Operational        | -6.18    | 36.23    |               |               |           |        |

| S/N |                         |                                       |          |          |               | Available     | Missing | MAP           |
|-----|-------------------------|---------------------------------------|----------|----------|---------------|---------------|---------|---------------|
| 0   | Station Name            | Remarks                               | Lat.     | Long     | Elevation (m) | Data          | data    | ( <b>mm</b> ) |
| 12  | Itiso Primary school    | Operational                           | -5.63    | 36.03    | 1219          |               |         |               |
| 13  | Kibungo                 | Operational                           | -7.02    | 37.80    | 270           | 1961-<br>2013 |         | 1475.48       |
| 14  | Kikombo Primary School  | Operational                           | -6.220   | 35.990   |               |               |         |               |
| 15  | Kimango Farm            | Operational                           | -6.75025 | 37.75513 | 468           |               |         |               |
| 16  | Kisarawe Agr            | Operational                           |          |          |               |               |         | 1111.6        |
| 17  | Kisarawe Boma           | Operational                           | -6.91139 | 39.07583 | 278           |               |         | 1111.6        |
| 18  | Lukose                  | Auto Operational (ICRAF<br>project)   | -6.84057 | 38.17123 | 172           |               |         |               |
| 19  | Matombo p/s             | Operational                           | -7.08    | 37.77    | 390           | 1971-<br>2013 |         | 1569.4        |
| 20  | Mayamaya Primary school | Operational                           | -5.844   | 35.839   |               |               |         |               |
| 21  | Mlali                   | M/Auto Operational<br>(ICRAF project) | -6.9662  | 37.53602 | 588           | 1961-<br>2013 |         | 793.6         |
| 22  | Mondo                   | Operational                           | -6.95    | 37.63    | 1120          | 1954-         | 1961    | 2531.24       |

| S/N |                      |                    |          |          |               | Available | Missing | MAP           |
|-----|----------------------|--------------------|----------|----------|---------------|-----------|---------|---------------|
| 0   | Station Name         | Remarks            | Lat.     | Long     | Elevation (m) | Data      | data    | ( <b>mm</b> ) |
|     |                      |                    |          |          |               | 2013      |         |               |
| 23  | Mongwe               | Operational        |          |          |               |           |         | 1250.0        |
| 24  |                      |                    |          |          | 1450          | 1961-     |         |               |
| 21  | Morning site juu     | Operational        | -6.90    | 37.67    | 1100          | 2013      |         | 2298.1        |
| 29  |                      |                    |          |          | 513           | 1961-     |         |               |
| 2)  | Morogoro Maji        | Operational        | -6.81755 | 37.66040 | 515           | 2013      |         | 750.6         |
| 31  | Ruhungo              | Operational        | -6.92    | 37.63    | 880           |           |         | 858.7         |
| 32  |                      |                    |          |          |               | 1967-     |         |               |
| 52  | Ubungo Maji          | Manual             | -6.78    | 39.20    |               | 2013      |         | 1003.2        |
| 33  | Utari Village        | Operational        | -6.99209 | 38.29058 | 91            |           |         |               |
| 35  | Wami at Mandera      | Automatic Rainfall | -6.24638 | 38.38732 | 85            |           |         |               |
| 36  |                      |                    |          |          |               | 1971-     | 1972and |               |
| 50  | Wami Prison Farm     | Automatic Rainfall | -6.39649 | 37.46294 | 399           | 2013      | 1973    | 1044.3        |
| 37  | Wami Rail Stn Met    | Operational        | -6.23155 | 38.70923 | 37            |           |         | 912.2         |
| 38  | Zanka Primary School | Operational        | -5.88    | 35.75    | 1133          |           |         | 559.2         |

| 5.2 1 | Fotal monthly Rainfa  | ll 2016/2017 | for Repr | esentativ | ve statio | ns    |       |       |       |       |      |      |      |         |
|-------|-----------------------|--------------|----------|-----------|-----------|-------|-------|-------|-------|-------|------|------|------|---------|
|       |                       | 20           | 16       |           |           |       |       |       | 2017  |       |      |      |      |         |
| NO    | STATION<br>NAME/MONTH | NOV          | DEC      | JAN       | FEB       | MAR   | APR   | MAY   | JUN   | JUL   | AUG  | SEP  | ОСТ  | TOTAL   |
| 01.   | Dodoma Maji           | 0            | 12.6     | 94.7      | 206       | 103.2 | 3.7   | 0     | 0     | 0     | 0    | 0    | 0    | 420.2   |
| 02.   | Wami/Prison           | 6            | 60.2     | 36.4      | 126.3     | 352.5 | 197.3 | 196.9 | 34    | 0     | 1.7  | 2.5  | 26   | 1039.8  |
| 03.   | Murad Sadiq           | 22.3         | 43       | 40        | 112.2     | 318.1 | 324   | 221.2 | 76.1  | 3.9   | 26.3 | 24.6 | 14.3 | 1226    |
| 04.   | Zanka Pr/School       | 0            | 13.1     | 120       | 153.6     | 179.8 | 22.1  | 27.4  | 0     | 0     | 0    | 0    | 0    | 516     |
| 05.   | Mondo                 | 193.3        | 58.1     | 86.4      | 198.8     | 103.6 | 847.2 | 597.9 | 62.6  | 0     | 17.2 | 46.7 | 32.1 | 2243.9  |
| 06.   | Morning Side          | 81.6         | 58.8     | 17.7      | 126.8     | 183.5 | 513.5 | 519.9 | 59.3  | 13.7  | 91.3 | 22.6 | 33.4 | 1722.1  |
| 07.   | Ruhungo               | 29           | 111      | 3         | 5         | 159   | 835   | 767   | 43    | 3     | 44   | 8    | 30   | 2037    |
| 08.   | Mlali                 | 21           | 14.5     | 39        | 85.8      | 211   | 461.9 | 85.7  | 36    | 0     | 0.5  | 7.5  | 33   | 995.9   |
| 09.   | Morogoro Maji         | 27.4         | 10.3     | 23.5      | 51.8      | 97.8  | 279.6 | 123.3 | 31.3  | 3.8   | 29.4 | 7.9  | 24.7 | 710.8   |
| 10.   | Mongwe                | 56           | 74.7     | 0         | 116.5     | 348.3 | 453.8 | 250.4 | 104.6 | 0     | 0    | 25.7 | 31   | 1461    |
| 11.   | Matombo Mission       | 184.4        | 47.7     | 22.5      | 184.5     | 527.1 | 644.1 | 445.6 | 99.7  | 47.04 | 55.8 | 45.3 | 95   | 2398.74 |

| 5.2 7 | Fotal monthly Rainfall 2 | 2016/2017 | for Repr | esentativ | ve statio | ns      |        |       |      |      |      |      |        |         |
|-------|--------------------------|-----------|----------|-----------|-----------|---------|--------|-------|------|------|------|------|--------|---------|
|       |                          | 20        | )16      |           |           |         |        |       | 2017 |      |      |      |        |         |
| NO    | STATION<br>NAME/MONTH    | NOV       | DEC      | JAN       | FEB       | MAR     | APR    | MAY   | JUN  | JUL  | AUG  | SEP  | ОСТ    | TOTAL   |
| 12.   | Ruvu Kibungo             | 142.4     | 86.3     | 40.9      | 122.7     | 514.6   | 336.8  | 179.8 | 51.9 | 16.5 | 76.7 | 23.3 | 62.4   | 1654.3  |
| 13.   | Kibungo juu              | 487.8     | 400.8    | 265.6     | 303.4     | 315.1   | 555.41 | 308.5 | 37   | 0    | 2.5  |      | 44.1   | 2720.21 |
| 14.   | Ubungo Maji              | 71.2      | 0        | 0         | 75.6      | 92.6    | 334.6  | 363.3 | 0    | 0.5  | 13.6 | 0    | 164.45 | 1115.85 |
| 15.   | Kisarawe FDC             | 21.5      | 10.8     | 17.7      | 55.5      | 256.7   | 234.7  | 364.3 | 0    | 0    | 0    | 0    | 100.1  | 1061.3  |
| 16.   | Kisarawe Boma            | 35.2      | 18.7     | 15.5      | 18.7      | 211.6   | 217    | 298.7 | 30.8 | 20.6 | 31.4 | 31.2 | 106.4  | 1035.8  |
| 17.   | Mikula                   | 5.52      | 7.1      | 11.5      | 0         | 34      | 327.6  | 48.7  | 51.6 | 0    | 0    | 0    | 33.8   | 519.82  |
| 18.   | Langali Primary School   | 35.7      | 69.5     | 0         | 244.4     | 338.1   | 228.2  | 115.7 | 29.5 | 0    | 6.2  | 2.9  | 26.4   | 1096.6  |
| 19.   | Milengwelengwe           | 13.5      | 14       | 122.1     | 167       | 164.824 | 392.3  | 255.6 | 47.7 | 10.1 | 0.2  | 0    | 3.5    | 1190.82 |
| 20.   | Dabalo Dam               | 0         | 25       | 190       | 133       | 197.9   | 36.2   | 4.1   | 0    | 0    | 0    | 0    | 0      | 586.2   |
| 21.   | Kutukutu Sec. School     | 25.6      | 25.6     | 78        | 50.1      | 131.3   | 230.5  | 151.2 | 7.3  | 2.1  | 18.2 | 14.5 | 3.9    | 738.3   |
| 22.   | Ikombo                   | 0         | 28.5     | 126.3     | 26.2      | 36.4    | 27.5   | 0     | 0    | 0    | 0    | 0    | 0      | 244.9   |
| 23.   | Mziha Primary school     | 41.2      | 50.5     | 36.3      | 2.3       | 144.8   | 320    | 441.1 | 35.3 | 7.8  | 24.6 | 15.8 | 25.5   | 1145.2  |

|     |                                | Status of AWL  | Status of Staff |          | <b>.</b>  | Elevation |                |
|-----|--------------------------------|----------------|-----------------|----------|-----------|-----------|----------------|
| Sn. | Station Name                   | Gauge          | Gauge           | Latitude | Longitude | (m.a.s.l) | Available data |
| 1   | Diwale at Ngomeni              | Not Functional | Not Functional  | -6.13764 | 37.59020  | 387       | OCT 1964-1989  |
| 2   | Great Kinyasungwe at Ikombo    | Functional     | Functional      | -5.7160  | 36.0849   |           |                |
| 3   | Kinyasungwe at Godegode        | Not Functional | Not Functional  | -6.541   | 36.574    |           |                |
| 4   | Kinyasungwe at Itiso           | Not Installed  | Not Functional  | -5.59    | 36.00     |           |                |
| 5   | Kinyasungwe at Kongwa/Dodoma   | Not Functional | Not Functional  | -6.21775 | 36.32700  | 855       |                |
| 6   | Kisangata at Mvumi             | Not Functional | Not Functional  | -6.58897 | 37.17288  | 436       |                |
| 7   | Kizinga at Buza                | Not Installed  | Not Functional  |          |           |           |                |
| 8   | Little Kinyasungwe at Chihanga | Vandalised     | Functional      | -5.9047  | 35.8439   |           |                |
| 9   | Little Kinyasungwe at Mayamaya | Functional     | Functional      | -5.81948 | 35.80410  | 1153      |                |
| 10  | Lukigura at Kimamba Rd. Br.    | Not Functional | Functional      | -5.81396 | 37.80101  | 512       |                |
| 11  | Lumuma at Kilimalulu           | Not Functional | Not Functional  | -6.68    | 36.67     |           |                |
| 12  | Masena at Ibumila              | Not Functional | Not Functional  | -5.903   | 36.390    |           |                |
| 13  | Mdukwe at Mdukwe               | Not Functional | Not Functional  | -6.795   | 36.930    |           |                |
| 14  | Mfizigo at Kibangile           | Not Functional | Functional      | -7.02970 | 37.80005  | 207       |                |
| 15  | Mfizigo at Lanzi               | Not Functional | Not Functional  | -7.08922 | 37.68515  | 898       |                |
| 16  | Mgeta at Duthumi               | Not Functional | Functional      | -7.41009 | 37.77803  | 138       |                |

| 17 | Mgeta at Mgeta             | Functional     | Functional     | -7.03    | 37.57    | 975 |               |
|----|----------------------------|----------------|----------------|----------|----------|-----|---------------|
| 18 | Miyombo at Kivungu         | Not Functional | Functional     | -6.90987 | 37.02422 | 477 |               |
| 19 | Mkata at Mkata             | Not Functional | Functional     | -6.75907 | 37.36130 | 399 |               |
| 20 | Mkindo at Mkindo           | Not Installed  | Not Functional | -6.24762 | 37.55250 |     |               |
| 21 | Mkondoa at Kilosa          | Not Functional | Not Functional | -6.83173 | 36.97824 | 495 |               |
| 22 | Mkondoa at Mbarahwe        | Not Functional | Not Functional | -6.60    | 36.78    |     |               |
| 23 | Mkondoa at Railway Bridge  | Not Functional | Not Functional | -6.762   | 36.933   |     |               |
| 24 | Morogoro at Morogoro       | Vandalised     | Functional     | -6.84562 | 37.67247 | 547 |               |
| 25 | Mvuha at Ngagama           | Vandalised     | Functional     | -7.19999 | 37.83795 | 138 |               |
| 26 | Mvuha at Tulo School       | Not Functional | Functional     | -7.24065 | 37.91766 |     |               |
| 27 | Mziha at Mziha-Kimamba     | Functional     | Functional     | -5.89588 | 37.78001 | 443 |               |
| 28 | Mzinga at Majimatitu       | Not Installed  | Functional     |          |          |     |               |
| 29 | Ngerengere at Kingolwira   | Not Functional | Functional     | -6.75177 | 37.75762 | 425 |               |
| 30 | Ngerengere at Konga        | Functional     | Functional     | -6.90653 | 37.59944 | 531 |               |
| 31 | Ngerengere at Lukwambe     | Not Functional | Not Functional | -6.59937 | 37.99728 | 332 |               |
| 32 | Ngerengere at Mgude        | Not installed  | Functional     | -6.76507 | 38.14570 | 180 |               |
| 33 | Ngerengere at Utari Bridge | Vandalised     | Not Functional | -7.01806 | 38.32478 | 101 | AUG 1951-1992 |
| 34 | Ruvu at Kibungo            | Functional     | Functional     | -7.02370 | 37.80948 | 203 | 1952-1992     |
| 35 | Ruvu at Kidunda            | Not Functional | Functional     | -7.26395 | 38.24558 | 86  |               |

| 36 | Ruvu at Mikula           | Not Functional | Functional     | -7.27967 | 38.11447 | 80  | 1967-2008      |  |
|----|--------------------------|----------------|----------------|----------|----------|-----|----------------|--|
|    |                          |                |                |          |          |     |                |  |
| 37 | Ruvu at Morogoro Rd. Br. | Functional     | Functional     | -6.69080 | 38.69427 | 24  | 1958-JUNE 2010 |  |
|    |                          |                |                |          |          |     |                |  |
| 38 | Tami at Msowero          | Not install    | Not Functional | -6.53173 | 37.21375 | 440 |                |  |
|    |                          |                |                |          |          |     |                |  |
| 39 | Wami at Dakawa           | Functional     | Functional     | -6.44783 | 37.53343 | 361 | 1954-2010      |  |
|    |                          |                |                |          |          |     |                |  |
| 40 | Wami at Mandera          | Not Functional | Not Functional | -6.24638 | 38.38732 | 87  | 1952-2010      |  |
|    |                          |                |                |          |          |     |                |  |

| 5.4 Discharge Monthly Average (m <sup>3</sup> /s) 2016/2017 |                                |      |      |      |      |       |       |        |       |      |      |      |      |         |
|-------------------------------------------------------------|--------------------------------|------|------|------|------|-------|-------|--------|-------|------|------|------|------|---------|
|                                                             |                                | 2016 |      | 2017 |      |       |       |        |       |      |      |      |      | Average |
| NO                                                          | STATION NAME/MONTH             | NOV  | DEC  | JAN  | FEB  | MAR   | APR   | MAY    | JUN   | JUL  | AUG  | SEP  | OCT  |         |
| 1                                                           | Wami at Dakawa 1G1             | 0.40 | 0.35 | 0.58 | 8.56 | 58.86 | 99.50 | 103.24 | 26.46 | 4.86 | 2.58 | 0.63 | 0.58 | 25.55   |
| 2                                                           | Ngerengere at Konga 1HA9A      | 0.75 | 0.85 | 0.53 | 0.57 | 0.84  | 1.77  | 1.22   | 0.51  | 0.31 | 0.33 | 0.25 | 0.35 | 0.69    |
| 3.                                                          | Ruvu at Kibungo 1H5            | 7.90 | 7.65 | 9.28 | 8.82 | 19.5  | 41.37 | 46.39  | 19.4  | 12.6 | 11.8 | 8.52 | 7.37 | 16.72   |
| 4.                                                          | Ruvu at Morogoro Rd Bridge 1H8 | 19.5 | 16.6 | 20.3 | 28.0 | 147.4 | 232.5 | 262.5  | 135.5 | 54.5 | 38.1 | 26.0 | 16.8 | 83.13   |

5.6 Daily Water level in Mindu Dam

|    | 203    | 16     |        | 2017   |        |        |        |        |        |        |        |      |  |  |
|----|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|------|--|--|
|    | Nov    | Dec    | Jan.   | Feb.   | Mar.   | Apr.   | May    | Jun    | Jul    | Aug    | Sep.   | Oct. |  |  |
| 1  | 505.52 | 505.12 | 504.57 | 504.09 | 503.75 | 505.98 | 507.20 | 507.12 | 507.05 | 507.02 | 507.01 |      |  |  |
| 2  | 505.50 | 505.10 | 504.57 | 504.08 | 503.72 | 506.07 | 507.18 | 507.13 | 507.05 | 507.02 | 507.01 |      |  |  |
| 3  | 505.48 | 505.08 | 504.56 | 504.07 | 503.70 | 506.10 | 507.16 | 507.13 | 507.05 | 507.02 | 507.01 |      |  |  |
| 4  | 505.46 | 505.06 | 504.54 | 504.04 | 503.69 | 506.20 | 507.18 | 507.12 | 507.05 | 507.04 | 507.00 |      |  |  |
| 5  | 505.44 | 505.04 | 504.52 | 504.03 | 503.68 | 506.28 | 507.28 | 507.11 | 507.04 | 507.04 | 507.00 |      |  |  |
| 6  | 505.42 | 505.02 | 504.50 | 505.01 | 503.67 | 506.34 | 507.40 | 507.11 | 507.04 | 507.03 | 506.90 |      |  |  |
| 7  | 505.40 | 505.00 | 504.48 | 504.99 | 503.67 | 506.34 | 507.29 | 507.10 | 507.04 | 507.03 | 506.82 |      |  |  |
| 8  | 505.38 | 504.98 | 504.47 | 503.95 | 503.65 | 506.68 | 507.40 | 507.10 | 507.03 | 507.03 | 506.82 |      |  |  |
| 9  | 505.36 | 504.96 | 504.45 | 503.97 | 503.68 | 506.90 | 507.38 | 507.10 | 507.03 | 507.03 | 506.75 |      |  |  |
| 10 | 505.34 | 504.94 | 504.47 | 503.93 | 503.67 | 507.15 | 507.37 | 507.10 | 507.03 | 507.02 | 506.70 |      |  |  |
| 11 | 505.32 | 504.93 | 504.45 | 503.90 | 503.65 | 507.15 | 507.47 | 507.10 | 507.03 | 507.02 | 506.64 |      |  |  |

| 12 |        |        |        |        |        |        |        |         |        |        |        |  |
|----|--------|--------|--------|--------|--------|--------|--------|---------|--------|--------|--------|--|
|    | 505.30 | 504.92 | 504.43 | 503.88 | 50.36  | 507.18 | 507.46 | 507.09  | 507.03 | 507.01 | 506.60 |  |
| 13 |        |        |        |        |        |        |        |         |        |        |        |  |
|    | 505.29 | 504.91 | 504.41 | 503.86 | 503.65 | 507.10 | 507.45 | 507.09  | 507.03 | 507.01 | 506.60 |  |
| 14 |        |        |        |        |        |        |        |         |        |        |        |  |
| 15 | 505.27 | 504.90 | 504.40 | 503.84 | 503.66 | 507.08 | 507.45 | 507.09  | 507.03 | 507.01 | 506.56 |  |
| 15 | 505.26 | 504.88 | 504.38 | 503.82 | 503.64 | 507.07 | 507.44 | 507.08  | 507.03 | 507.01 | 506.54 |  |
| 16 | 303.20 | 304.00 | 304.30 | 505.62 | 505.04 | 307.07 | 307.44 | 307.08  | 307.03 | 307.01 | 500.54 |  |
| 10 | 505.24 | 504.86 | 504.36 | 503.80 | 503.62 | 507.21 | 507.42 | 507.08  | 507.03 | 507.02 | 506.54 |  |
| 17 |        |        |        |        | 000.01 |        |        |         |        |        |        |  |
|    | 505.22 | 504.84 | 504.35 | 503.78 | 503.64 | 507.10 | 507.40 | 507.08  | 507.02 | 507.02 | 506.54 |  |
| 18 |        |        |        |        |        |        |        |         |        |        |        |  |
|    | 505.20 | 504.82 | 504.34 | 503.76 | 503.68 | 507.09 | 507.37 | 507.08  | 507.02 | 507.02 | 506.54 |  |
| 19 |        |        |        |        |        |        |        |         |        |        |        |  |
| 20 | 505.21 | 504.80 | 504.31 | 503.74 | 503.80 | 507.10 | 507.35 | 507.07  | 507.02 | 507.02 | 506.90 |  |
| 20 |        | F04 79 | 504.29 | 502 72 |        | 507.35 | F07 22 | 507.07  | 507.02 | 507.02 | 506.90 |  |
| 21 | 505.26 | 504.78 | 504.29 | 503.72 | 504.51 | 507.55 | 507.32 | 507.07  | 507.02 | 507.02 | 506.90 |  |
| 21 | 505.28 | 504.76 | 504.27 | 503.70 | 504.82 | 507.28 | 507.29 | 507.07  | 507.02 | 507.07 | 506.90 |  |
| 22 |        |        |        |        |        |        |        |         |        |        |        |  |
|    | 505.27 | 504.74 | 504.25 | 503.70 | 505.00 | 507.18 | 507.25 | 507.07  | 507.02 | 507.10 | 506.90 |  |
| 23 |        |        |        |        |        |        |        |         |        |        |        |  |
|    | 505.26 | 504.72 | 504.23 | 503.69 | 505.10 | 507.20 | 507.23 | 507.06  | 507.01 | 507.08 | 506.89 |  |
| 24 |        |        |        |        |        |        |        |         |        |        |        |  |
| 27 | 505.24 | 504.70 | 504.21 | 503.73 | 505.20 | 507.22 | 507.20 | 507.06  | 507.01 | 507.08 | 506.89 |  |
| 25 |        | E04 69 | E04 10 | 503.78 |        | E07 19 | E07 19 | E07.06  | E07 01 | E07.06 | 506.86 |  |
| 26 | 505.22 | 504.68 | 504.19 | 503.78 | 505.25 | 507.18 | 507.18 | 507.06  | 507.01 | 507.06 | 00.000 |  |
| 20 | 505.21 | 505.66 | 504.17 | 503.77 | 505.29 | 507.25 | 507.18 | 507.06  | 507.01 | 507.04 | 506.86 |  |
| 27 |        | 223.00 |        |        | 000.20 |        |        | 222.100 | 00.102 |        | 223.00 |  |
|    | 505.20 | 504.64 | 504.15 | 503.76 | 505.30 | 507.25 | 507.17 | 507.05  | 507.01 | 507.04 | 506.86 |  |

| 28      |         |        |        |        |        |        |        |        |        |        |        |  |
|---------|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--|
|         | 505.19  | 504.62 | 504.13 |        | 505.46 | 507.18 | 507.17 | 507.05 | 507.01 | 507.02 | 506.85 |  |
| 29      |         |        |        |        |        |        |        |        |        |        |        |  |
|         | 505.17  | 504.61 | 504.11 |        | 505.59 | 507.16 | 507.16 | 507.05 | 507.01 | 507.02 | 506.85 |  |
| 30      |         |        |        |        |        |        |        |        |        |        |        |  |
|         | 505.15  | 504.60 | 504.10 |        | 505.78 | 507.19 | 507.14 | 507.05 | 507.01 | 507.01 | 506.83 |  |
| 31      |         |        |        |        |        |        |        |        |        |        |        |  |
|         | 505.00  | 504.59 | 504.11 |        |        |        | 507.13 |        | 507.02 | 507.01 |        |  |
| Mean    |         |        |        |        |        |        |        |        |        |        |        |  |
|         | 505.29  | 504.88 | 504.35 | 503.94 | 504.23 | 506.92 | 507.29 | 507.08 | 507.03 | 506.55 | 506.80 |  |
| Maximum |         |        |        |        |        |        |        |        |        |        |        |  |
|         | 50517.0 | 505.7  | 504.6  | 505.0  | 505.8  | 507.4  | 507.5  | 507.1  | 507.1  | 507.1  | 507.0  |  |
| Minimum |         |        |        |        |        |        |        |        |        |        |        |  |
|         | 505.0   | 504.6  | 504.1  | 503.7  | 503.4  | 506.0  | 507.1  | 507.1  | 507.0  | 507.0  | 506.5  |  |